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As is well known from the theory of shock waves in ordinary and magneto- 

hydrodynamics, the discontinuities of hydrodynamic quantities at the 

transition through the front of a wave must satisfy certain well-defined 

algebraic relationships. Furthermore, it is also known that not every 

discontinuity satisfying these relations actually represents a shock wave. 

Khen dealing with applications it is important to know which discontinu- 

ities represent a shock wave and which do not. 

Let us assume that to a given particular discontinuity of the hydro- 

dynamic quantities u_ - u+ there corresponds a steady shock wave moving 

with velocity U. This means that the system of equations of magnetohydro- 

dynamics, which takes into account the dissipative processes, must have 

solutions of the form u = u(x - Ut) , which tend to u_ and u+, when 

x - f 00. Let us designate these solutions as transitional. 

The problem concerning the sufficiency of conditions of existence of 

the transitional solution in the system of nonlinear equations was formu- 

lated by Gel’fand Lll. Germain [21 has proven the existence of a fast 

shock wave in magnetohydrodynamics in the case of plane flow. Under more 

restrictive assumptions he also established the existence of the slow 

shock wave. Kulikovskii and Liubimov [3j and Liubimov [41 have proven the 

existence of fast and slow shock waves under the assumption that only a 

Part of the coefficients of dissipation are different from zero. A new 

approach to the problem of the existence of the transitional solutions 

was proposed by Godunov E5.61. The present paper treats dissipative 

systems of nonlinear equations. Particular cases of such systems are the 

equations of ordinary and magnetohydrodynamics for which the dissipative 

Processes are taken into account. 

1. Statement of the problem. Be shall consider discontinuities 
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of sufficiently small magnitude. The velocity of transition of such a 

discontinuity closely equals the phase velocities V of the system. It is 

natural to distinguish between ordinary and singular phase velocities. 

For example, in magnetohydrodynamics ordinary velocities are the velo- 

cities of slow and fast magneto-sound waves, whereas the Ufven velocity 

is a singular velocity. A precise definition of a dissipative system and 

of an ordinary phase velocity will be given below. 

In the case of dissipative systems the following statement will be 

proven: 

To any discontinuous solution of a system, formulated without taking 

into account the dissipative processes, there corresponds a shock wave, 

i.e. a transitional solution of an exact system, if (a) the discontinuity 

of a discontinuous solution is stable with regard to attenuation, (b) the 

velocity Ii of transition of the discontinuity is sufficiently close to 

one of the ordinary phase velocities and (cl the discontinuity is suffi- 

ciently small. 

If the foregoing conditions are fulfilled, the existence of slow and 

fast shock waves of sufficiently small intensity in magnetohydrodynamics 

is established immediately, regardless of the value of the coefficients 

of dissipation. 

‘lhe proof is based on the following theorem. 

Theorem 2. ‘Ike system 

m-1 

amy + . . . + a,$$- @o(y-$) = E 2 y'""pk (y, y', . . . , y!m-l), E; t?) -:- 

k=l 

+ &?Pl (y, y’, . . . , y(m-1), g; e) (1.1) 

Ei’ - i bikEk zz fi (y) -t EFi (y, E; 6) (i=2,3,. . . , m) 
k=z 

gi = fi (y> -+ &Fi (Y7 E; E) (i=m+l,. . . , n) 

has a transitional solution ~(x, E), <CX, E) = {ei(x, E))~“, which satis- 

fies the conditions y( -00, E) = 0, y( +a, E) = 1 + 0(s2), if all the 

roots of tie polynomial tZmum + ‘lN_ 1v 
m-l + . . . + nlv are real and 

simple, if the determinant jbikjZRL is not equal to zero, if all the 

functions F; (i = 1, . . . , n), fi (i = 2, 3, . . . , n) and vk (fi = 1, . . . , 
m - 1) are analytic with respect to their argrments and if the absolute 

value of the parameter E is sufficiently small. 

Vie pr0o.f of this theorem is :;iven in tlie appendix. 

3 Dissipative and ideal systems. I. The systems of equations of 
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ordinary and magnetohydrodynamics may be written schematically in one- 

dimensional form as follows: 

-g ai (u) + & bi (u) = 0 (i = 1, . . . , kl) 

+ Ui (U) + &bj (U) = G&i(U) ZZ Ci (U) (i=k,+l,. . . , k2) (2.1) 

-& bi (u) = G&(U) Ez ci (u) (i=k%+l,. . . , n) 

where u = {uj), n is a set of quantities which describe.the condition of 

the fluid (pressure, temperature, velocity components, magnetic field 

and others), ai( hi(u) and ci(u) are certain analytical functions, 

'i -' > 0 are coefficients of dissipation, namely viscosity, magnetic 
viscosity, thermal conductivity. 

The system (2.1) admits.of solutions of the form u = u" which describe 

constant homogeneous flows. Any vector may be substituted for u", pro- 

vided it satisfies the system of equations yi(uo) = ?(i = k, + 1, . . . . n). 

Let the system (2.1) be called a dissipating system if all of its 

solutions are as~ptotically stable with respect to small disturbances 

of the initial condition. 

If system (2.1) is dissipative, then it is easily seen that all the 

roots as(k) ( -m < k < a) of equation 

D (id, ik, u”) 5 det 1 iodij (u”) - ikbij (u”) - Gi$ij (u”) 1 =, 0 

Uij (u”) = 2 _and SO on. 
I 

(2.2) 
j u--u* 

are located in the upper half-plane. 

*In ordinary and ma~netol~ydrodyn~ic fluids all free vibrations vanish 

with time. Therefore the systems of differential equations by which they 

are defined are dissipative. 

If in one of the equations (2.1) we assume ui = w or ai = 0, then that 

equation assumes the following form 

$i (U) = 09 + Ui (U) + 2 bi (U) = 0 or & bi (u) = 0 

Assuming that a part of the coefficients ai vanish, while the rest 

tend to infinity, we will have an ideal system. Consequently in this 

manner there are _ vn - k separate ideal systems associated with the system 
(2.1). Tle ideal system in which all oj = m (oi = 0) we shall call the 

lowest (the highest) system. 
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We shall call two systems neighboring systems if they differ by only 

one equation. 

If we assume that a part of the coefficients u. vanishes and that the 

rest equal infinity, then a part of the lines in the determinant (2.2) 

will be substituted by the lines yij(uo) and a part by the lines 

kOaij(uo) - ikbij(uo). In this case the solutions of Equation (2.2) will 

have the following form: os = Vsk, where Vs - Vs(uo) are phase velocities 

of the corresponding ideal system. The phase velocities of the lowest 

system are roots of the equation 

I - Vaij (u”) + bij (u”) I 
A (V) z dct j 

llij C"") 

=O (Z..?) 

When referring to;phase velocities of system (2.1) we mean the phase 

velocities of the lowest system, 

Phase velocities of all ideal systems associated with the dissipative 

system (2.1) are real [81 (see also [91) . 

3. Ordinary phase velocities. Let V = V(u_) be one of the phase 

velocities of system (2.1). We shall call it an ordinary velocity if the 

following conditions are fulfilled. 

(a) The quantity V is a simple root of the characteristic equation 

(2.3) for uo = u .- 

(b) In one of the 

from V for u” = u_. 

(c) The uppermost 

u” = u _* 

neighboring systems all phase velocities differ* 

system has no phase velocity identical with V for 

(d) To every value of II from any neighborhood of the number V there 

corresponds a discontinuity, propagating with velocity II and tending to 

zero as II + V, while the ratio (u+ - u_)/(LI - I”) tends to a finite limit 

for (U - V) - 0. 

(e) All roots w of equation D( - vV, -v, u_) = 0 are simple and real, 

with the exception of (kl + 1) which is a multiple root v = 0. 

In magnetohydrodynamics the Alfven and entropic waves Cl01 are singular 

waves because for them condition (d) is not fulfilled [ll] . On the other 

hand, fast and slow magneto-sound waves are ordinary waves. Indeed, the 

uppermost system in this case has an infinite viscosity and thermal 

* If system (2.1) is dissipative then the property (a) is the result of 

property (b) . 
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conductivity and zero electric conductivity. In such a system we have 

PH o 

x=’ 
a% o 

==, aT 0 -zI , 

ax 

This means that one phase velocity equals vz, and the rest are in- 

finite. Condition (c) is fulfilled. To check condition (b) consider the 

neighboring system, in which the coefficient of thermal conductivity is 

infinite, the magnetic and ordinary viscosity vanish. Snail oscillations 

of such a system are isothennal and the phase velocities may be obtained 

from the phase velocities of ideal magnetohydrodynamics by replacing the 

ordinary sound velocity by the isothermal sound velocity. 

The most complicated task would be the checking of condition (e) .!low- 

ever, the property of (e) is proved already in the work of Germain [21. 

In the case of a sound wave in ordinary hydrodynamics condition (e! has 

been proven by Godunov 151 . 

4. nre system which determines the structure of a shock 
wave. To the stationary hhock wave, propagating with velocity II, there 

corresponds a solution of system (2.1) of the form u(n, t) = u(x - Ut), 

where u( km) = u*, u’(*m) = 0. Evidently function u(n) is the solution 

of the system of equations 

$ {- Un (u) + b(u)} = c(u) 

For the purpose of further considerations it is necessary to make 

certain transformations of system (4.1). Let us introduce the notations 

R(u) = b(u) - V(U_)U(U), and write Fguation (4.1) in the following form: 

-$ {- EU (u) + B (u)} = c(u) (E = u -I; pi_)) (4.2) 

The set of all vectors, in which the first k, (last n - kl) of the 

coordinates vanish, will be denoted by H,(G,) . Let P, and f-)1 be the 

operators of the orthogonal projection onto the subspaces II, and G, re- 

spectively. These operators are given by the matrices 

aik (U_>, 

aBi 
Bi/; (u_) = au 

k u=u_ 
9 

aci 

which we shall denote by al, B, and cl. ?Jote the relations 

QlCl-- QlCl = 0, P,c = c, PIG, = Cl 

From (4.2) it follows that ol{ -EU(U) + B(u)) = const. %thout lirnit- 

ing the generality of the investigation, we shall assume a(~_) = 0, 
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Rfu_) = 0. Also 

- sQla (u) + QII: (u) = 0 (4.3) 

and Equation (4.2) then assumes the following form: 

& f- EP,U (u) + P1B (u)} zxz R (u) - EQ~G (u) (R = QIR -i- C\ (4.4) 

Let US prove that for certain known conditions system (4.4) has a 

transitional solution. From (4.4) it follows that quantities u_ = u(--co) 
and u+ = uf +m) satisfy relation 

Z? (u_) - sQln (u_) = R (II+) -- E&Q (u+) = 0 (4.5) 

5. Discontinuities propagating with velocity close to the 
ordinary phase velocity. Let us investigate Equation (~4.5) in de- 

tail. Let us assume u+ = u_ + ev+ and expand the vector-functions R(u+) 
and a(~+,) in Taylor series. \?e obtain 

B,c, + E& (v+f + . . . = EQ~CI~U+ + c2Q1al (v+) + . . . (5 11 

iiere R, is a particular or intrinsic operator. 'Ibis follows directly 

from (2.3). Therefore there exists a vector u", such that r'Tlvo = 0. Let 

us introduce in the investigation also vector us, which satisfies rela- 

tion I' *v* = 0, where R,* '1 is the operator conjugate to R,. Notice, that 

crvo ==: Prc*$ z P112r# z= 0 

According to property (d) the ordinary phase velocity vector v+ tends 

to a finite limit, when E _ 0. From (5.1) it follows that 

The number r_~ is easily found by multiplying Equation (5.1) by U+ and 

then approaching the limit E - 0; we obtain the result 

p (II”, I& (0”)) = (v*, Q,n,v") 

Let, us prove that (v*, ,'l)lnlvO) # 0. According to property (a) of an 

ordinary phase velocity the number V_ = V(U_) is a simple zero of func- 

tion A(V) = det 18, - (V - C'_)Q,CX~/. Therelrore A'(V_) # 0. %I the otlier 

hand 
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where Tik are algebraic supplements of determinant det /RI/. 

Since according to (5.3) not all fib vanish and since the operator R, 
is particular, 

Vi*VkOl 

the numbers rik may be represented in the form rik = 
if the vectors v” and v* are suitably normalized. Substituting 

this expression of rik in (5.3) we obtain 

A’ (J’_) = -- (u*, Qlulvoj + o 
Consequently 

(a*, R, (q) # 0. p = (U”> Ql4~7 / (u*, -Rz (0 

6. Reduction of system (4.3) to (4.4) to the canonical 
form. Let us note that dB(u)/dx = &u)du/dx. According to property (c) 
of an ordinary phase velocity the operator k(u_) - R, has a reverse 
operator. Therefore for sufficiently small 1~1 and 1~ - u_] Equation 
(4.2) may be rewritten in the form 

du 
-- = [h(U) 
dx 

- E;t (u)]-‘c (u) (6.1) 

Introducing .the notations Hz = B1-“N, and G, = B,-‘G,, we shall de- 
fine the operator P,, assuming 

P&J = cp (cp E l~zft P# = 0 19, f. G2l 

To simplify further derivations we shall assume, without limiting the 
generality, u_ = 0. Let us separate the desired function u(x) into two 
terms 

u = z $- 2L’ (z s Hz. II: E Gzt 

and substitute it in (4.3) 

Q&z -I- Q,B,w = EQ# (EC) -t Q1 I&U - B (U)I 

Since 2 E Ez, then R, z E H, and Q,B, z = 0 
and Q,B,w = Blw. Therefore 

w = B1-‘Q, {EU (u) +- Blu - R (u)} 

Apply the operator P, to both parts of (6.1). 

d; 
-z = P,B,-‘c,u -I- P, ([u’(u) - & (u)]-1 c (u) - B,-‘qu) 

(6.2) 
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Note that clu~Hl, B,-lcl~ti Y2. Iherefore P,J31-1cl~ = B1-lclu and 

dz 
- = II,-‘c,u + F(u), 
dx F (u) = P, t[B (~1 

System (6.2) to (6.3) is equivalent to 

Before proceeding further let us prove 

equation XIV ’ = 0, we obtain 

- 8; (u)]-l c (U) - Bl-lClu} (6.3j 

the initial system (4.1). 

that v” E H,. Starting from 

0 = Q,R,v” = Q1 (Q,B + cl) v* = QIBv” (6.4) 

Hence if follows, that.B1ro EN, and v” EB~-~H~ = 8,. 

Let el, e2, . . . . eh(z = n- k1) be any starting base in !I,, where 

el = v’. In addition, let there be a certain starting base es+ 1, . . . . 

e” in G,. Assume 

.?n 11 

2 z sp”yei + x EQei, W = 2 &“Eiei (6.5) 

i=2 km-+1 

If in Equations (6.2), (6.3) coordinates are introduced, a system of 

the following form is obtained 

Y’ = s $ P&j + a (a?/ + by)“- -I- s2’p (y, I&F - f * 9 En; E) 
j=2 (I;.(;) 

II‘ 

Ei’ - 2 PijEj = ai.!/ + big2 $ ‘EFi (_I/, E,2, + . . y En; E) 
(i= L 3. . . . . n) 

j-2 

ii = my + by2 + &Fi(y, E2,. . . 7 Em; &) 

Let us represent by 

(i = m + 1, . . , n) 

D, (Y, E, u_) = det 1 v (- FP~u~ + P,B,) - R, $- .sOlnT j 

the characteristic polynomial of system (4.4) at the point u = u_. 

System (6.6) is equivalent to the system (4.4). ‘Iberefore its character- 

istic polynomial is identical to D,(v, E, u_) except for the multiplier. 

In part we obtain 

11, (Y, 0, II_) = conStY dct I/3ij -VyBij \zffl (6.7. 

Assume 
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Q (Y, o, u_) =f a,,,~ + a,+_.l~m--l + . . . + a,v = VAX (Y) 

Let us apply now the operator A(d/dx) to the first of equations (6.6). 
By the well known Hamilton-Kelly theorem [121, we obtain 

m-1 m-1 

+ e2& (y, y’, . . . , y(m-% %21 . . . , En; e) (6.8) 

Let us denote by (A) the system which will be obtained, if in the 
system (6.6) the first equation is replaced by Equation (6.5). Systems 
(6.6) and (A) are equivalent in the sense that every transitional solu- 
tion of one is the transitional solution of the other. This follows from 
the fact that among the solutions of equation A,fd/dx)cp = 0 only the 
trivial solution cp f 0 is bounded on the entire x-axis. 

7. Existence of shock waves. It will be 
is a particular case of system (1.1) and that it 
ditions of ‘lbeorem 1.1. 

Condition (a) of the Theorem 1.1 is satisfied 
values of absolute magnitude of e because of the 
ing to the ordinary phase velocity, since 

shown that system (A) 
satisfies all the con- 

for sufficiently small 
condition (ef pertain- 

u1 (Y, 0, u_) == (-Y) D (- vv_, - y, U-J 

To check condition (b), use is made of the following property of the 
dissipating systems. Let v = v,(U) be the root of equation (-v)-&l D 

(-VU, -v, u_) = 0, which becomes zero for U = V_. 

If velocity V_ possesses the property (b) of the ordinary phase velo- 
city*, then v0 ‘(V-1 < 0. 

It is easily seen that the characteristic polynomial of the system 
(A) has the root V(E) = - +Jal + O(s*) for small E. Therefore, 

&/cl ’ 0. 

According to the condition of stability of a discontinuity relative 

l This statement is proven in TSI for systems of a more special form 

than system (2.1). However, the derived proof is valid in the case of 

the systems of the form (2.1). 
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to dissipation, the following inequality must be satisfied 

i.e. it must be that E < 0. And thus @,a1 < 0 and the condition (b) is 

satisfied. At the same time it was proved that condition (c) is also 

satisfied, since on account of (6.7) 

a, = const det 1 Pik i2” 

It remains to prove that yaa = PO. To do this we notice that the co- 

ordinates of vector u+ according to (5.2) equal 

g!+-fi-Q(& Ei z t? (&) (i = 2, 3,. . . , n) 

On the other hand, a constant vector u = u+ is the solution of the 
system (A). Substituting it into Equation (6.81, we obtain 

Hence, it is concluded that y,,* = p,. 

Thus, the statement formulated in Section I has been proven. 

In particular it has been proven that there exists a structure in slow 

and fast magnetohyJrodynamic waves of sufficiently small intensity. 

8. Appendix. Auxiliary equation, We shall begin the proof of Theorem 

(1.1) with the investigation of the auxiliary equation 

+3 y f Ef (?/) -i- E$ (3) = 0 (0 <o < 1) (8.1) 

Define two numbers a_ > 0 and a+ < 0 in such manner that the poly- 
nomials P(v) + O* have only real and also simple zeros. In regard to 
functions f(y) and y(x) we assume the following. 

(I) Function f(y) is defined, continuous and differentiable in a 

closed interval p1 < y Q pa, where pI a_ = p2a+. 

(2) Let 

(3) No matter what the interval is (a, a) (p, < a < 0 < (3 < pz), there 

exists a number d(a, p) > 0, such that 
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If’(~)I>d(a, P)la(y)l (YE& PI), 
f a-(Y<O) 

* (y) = 1 a, (y > 0) 

(4) Function Y(X) is determined on the whole axis - UJ < x < 03 and 

tends to certain limits y( -m), v( +m), when x - k 03. 

(5) The following inequalities are valid 

Let us denote by S the set of all continuous functions o(x) in the 

intervals ( -m, 0) and (0, m), which satisfy the following inequalities 

The following theorem is valid: 

Theorem 8.1. If conditions (1) to (5) are satisfied, then Equation 

(8.1) has in S a transitional solution and this solution is unique [T]. 

We shall denote by yf the set of all functions V(X), which satisfy 

conditions (4) and (5). Theorem (8.1) shows that there exists an operator 

TE which transforms functions y k.Yf into the solutions y(x) E S of Equa- 

tion (8.1) 

The following theorem may be proven: 

Theorem 8.2. There exists a number ~1 > 0, such that for all E in the 

interval 0 < E < EI, and for all I~I, v’2 E Y f the following evaluation 

is valid 

(l(fm+$g!Pf~). x II 9 II x= sup I 9 (4 I 

The following consequence follows from Theorem 8.2. 

Consequence 8.1. If all the conditions of Theorem 8.2 are satisfied 

and 0 < E < EI, then 

11 Yi” - Yp’ 11 < e”k (i + & \\ $3 - $1 11 (k=i,2,...,nz-i) 
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where 

Proof of Theorem 1.1. According to the condition of the theorem the 
determinant 1 bik/ 2m does not vanish. Therefore the system of equations 

Ei’ - jj b, ik = qi ‘2) (II wi II <K, i = 2, 3, . . . I ml 
k=8 

has a bounded solution ei(x) along the entire axis. There exists a con- 
stant B such that 

Assume 

II 5i II <BK (i = 2,3,. . * ,n) 

maxlfi(Y)l==Cli (---Libya) (i = 2, 3, . . * , n) 

and denote by D the region in (a f II) - I)-dimensional space of variables 

y, Y’. Y’: aa.9 Y 
(m-1) 

; &, &’ ..*, Cn, determined by the inequalities 

--1 <Y<i. jy’“)j<eAlk, I&I<(B+i)& (i=2.. ,.,n; k=i I.e.1 m- ii 

It may be asserted that vector-function {Y(X), C(X)) belongs to the 
set S(D), if: 

I) Functions y(x) and ei(x) ( i = 2.3, . . . , A) are continuous on the 
whole x-axis and tend toward a certain limit for x -, k w; 

2) Function y(r) has continuous derivatives, including the derivative 
of the (a - 1) order, all of which tend to zero for x - f a; 

3) for every value x(--m < x <a) vector y(x), y’(x), . . . . y +1)(x), 

<,ce. ..“ t,,(x) belongs to the region D; 

4) Function xy(x) is not negative. 

Let us associate for comparison with every vector function {y, @ 

from S(D) the vector function A{y. 4) = fyx, Ex), which satisfies the 
following relations: 

P 
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fi”’ - 5 bij Ej” = upi (x) (i = 2,3, . . . , m) 
j=2 

Ef” = 4% (4 (i=m+l,...,n) 

where 

m-l 

9 (~1 = - 2 yfK) ‘Pk (y, y’, . . . , yim--lf, 82, . . . , En; e) - 

k=l 

From Theorem 8.1 it follows that these relations, indeed, determine 
operator A. The Theorem 8.2 and its corollary 8.1 show that for 
sufficiently small E > 0 the operator A does not invalidate the vector 
functions in the region S(D) and that it is compressible relative to the 
norm 

II Y* E II = slc”p [I Y W I + $ “il I Ytk) (4 I + 5 I Ei WI} 
k=l i=?& 

with the coefficient of compressibility p < 1. 

Hence it follows that there exists a vector function (y(x), C(X)) 

such that A{y, <I = {y, 5). This function serves as the transitional 
solution of system (1.1). Theorem (1.1) is proved, 
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